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Abstract
This work is devoted to the evaluation of a change in the barrier height in the case of an atom
jump to the nearest vacancy site under strain and to obtaining the vacancy diffusion equation
taking into consideration the strain influence. Earlier, we suggested a new approach to solving
the problem of the influence of elastic stress on the vacancy jump rate for atomic diffusion in
crystals. It was based on the simple observation that a stress field alters the surrounding
configuration and on the assumption that the height of the activation barrier should be altered
accordingly. The change of the activation barrier was shown to depend on the displacement
field, the symmetry of the crystal, the atomic structure near point defects and the interatomic
potential. Knowledge of this change makes it possible to calculate the jump rate. The
expression for the vacancy flux was obtained with the help of the ‘hole gas’ method, by using
the jump rate. In these nonlinear equations, the influence of the strain tensor component on
diffusion flux is determined by coefficients, which depend on the atomic interaction and atomic
structure of the saddle-point configuration. One of the aims of the present work is to generalize
our approach taking into account N-body interatomic interaction. Now we present the diffusion
equation for vacancy in FCC and BCC metals, obtained in a more general and convenient form.

1. Introduction

Elastic fields, generated by defects of the structure, influence
the diffusion process. In addition, as a result, it leads to
the alteration of the phase transformation kinetic, segregation
formation and changes in the system properties. However,
understanding the effects of pressure and strain on diffusion
in solids is now limited. Usually, the equation of diffusion in
the presence of stress field has the following form [1]:

JF = −D

(
∇c + c

∇U

kBT

)
, (1)

where JF is the flux of impurity atoms or defects, c is
the concentration of impurity atoms or defects, D is the
corresponding diffusion coefficient under zero strain, kB is
Boltzmann’s constant, T is the temperature, U is an interaction
potential of the diffusing atoms with the defects generating
stress fields. Some authors consider point defects as the centers
of dilatation [2]. Equation (1) is similar to one, describing

the electric field influence on the diffusion flux. At the same
time, this expression does not take into account the principal
difference between the effect of electrical field, which directly
affects a jumping atom and the elastic field, the influence of
which is realized through the neighbors surrounding this atom.
It is clear, that for the second case the effect must depend on
the geometry of the arrangement of neighboring atoms and,
consequently, on crystallographic structure.

Equation (1) is too crude for objects of atomic size. This
one and some other approximations [3] do not take into account
the atomic structure in the neighborhood of the defect and
stresses, which essentially influence the energy of a jumping
atom [3, 4]. Furthermore, very few papers have considered,
that shear stress can modify the atomic jump frequency [4–6].
There are some earlier works devoted to the effects of elastic
strain on energetic contributions to the free energy barrier
to diffusional motion [5–8], as well as describing elastic
strain effects on the contribution to the migration barrier of
interaction of the migrating defects with conduction electrons
and on the contribution to the lattice-vibrational entropic [8].
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Figure 1. Positions of interstitial atom in the bcc structure. (a) Equilibrium configuration, (b) saddle-point configuration.

The importance of the anisotropy of the saddle point was first
pointed out by Koehler [5].

Let us consider, for example, an interstitial atom in
bcc lattice (figure 1) to illustrate the features of our
approach. The interstitial atom energy depends on the distance
between this atom s and its neighboring atoms: Es =
E(r1 − rs , . . . , rk − rs , . . .), k ∈ {1, . . . , n}, where n is the
number of atoms in the system.

The displacement field changes the distances between
interstitial atom and metal atoms and, consequently, interstitial
atom energy. Es = Es(rk + uk − rs − us). Here uk ≡ u(rk)

is the displacement of atom k, which is a function of its
location rk . This is true both for the equilibrium configuration
(figure 1(a)) and for the saddle-point configuration (figure 1(b))
and it is the starting point of our approach [9–12]. As the
stress fields can alter the atomic configuration of the defect
environments, the local magnitude of the activation barrier for
defect transition in different directions is altered in accordance
with the configuration change. Knowing this alteration, we
calculated the atomic jump rates and obtained equations for
the fluxes in interstitial alloys with fcc and bcc structures [13].

In a similar way we obtained early equations for the
fluxes of the vacancies in fcc [9, 11] and bcc [10] metals. In
this paper, we continue the investigation of diffusion under
strain, generalize our approach and apply it to study the stress
influence on diffusion vacancy in these metals. We present the
diffusion equation for vacancy, obtained for a general case and
in another more convenient form. In particular, one of the aims
of the present work is to generalize our approach taking into
account the possibility of N-body interatomic interaction.

2. Main moments of theory of diffusion under a stress

We consider vacancy diffusion in cubic crystals in the presence
of a stress field. As pointed out above, the equilibrium
positions of atoms are changed due to the displacement field
and the potential energy of atoms is changed accordingly. This

is true whatever the position of the atom under consideration,
in saddle as well as in an equilibrium configuration. As shown
in [12] the change of the atom energy under strain is given by
the following equation:

�Es =
∑

k

1

Rks

∂ Es

∂ Rks
(x2

ksε11 + y2
ksε22 + z2

ksε33 + 2xks yksε12

+ 2xks zksε13 + 2ykszksε23), (2)

where xk , yk , zk are the coordinates of the atom k, xks =
xk − xs , yks = yk − ys , zks = zk − zs , k �= s, Rks =
|rk − rs | =

√
x2

ks + y2
ks + z2

ks for all atoms k, and εi j =
(1/2)(∂ui/∂x j + ∂u j/∂xi) is the strain tensor (i, j = 1, 2, 3).

Now it is necessary to evaluate the change of a system
energy E that in the case of N-body potentials can be written
as [14]

E =
∑

s

f (ρs) + 1
2

∑
s

∑
k

� (rsk), ρs =
∑
k �=s

ϕ (rsk),

(3)
where � and f are functions describing N-body potential, ρs is
electron density in the point of atom s position, ϕ is a function
determining a contribution of each atom in electron density. If
the system energy E = E(xk − xs, yk − ys, zk − zs), (k,= 1,
2, . . . , n), then the change of the system energy conditioned by
strain is

�E =
∑

s

[∑
k �=s

(
x2

ks

Rks

∂ E

∂ Rks

)
ε11(rs)

+
∑

k

(
y2

ks

Rks

∂ E

∂ Rks

)
ε22(rs) +

∑
k

(
z2

ks

Rks

∂ E

∂ Rks

)
ε33(rs)

+ 2
∑

k

(
xks yks

Rks

∂ E

∂ Rks

)
ε12(rs)

+ 2
∑

k

(
xks zks

Rks

∂ E

∂ Rks

)
ε13(rs)

+ 2
∑

k

(
yks zks

Rks

∂ E

∂ Rks

)
ε23(rs)

]
. (4)

2



J. Phys.: Condens. Matter 20 (2008) 485203 A V Nazarov and A A Mikheev

Following Glyde [15], we suppose that the rates of atom jumps
in different directions are given by

�i = νi exp

(
− Qi

kBT

)
. (5)

Here �i is a rate of atom jump in i -direction, Qi = EW − E0,
is the activation barrier of atom transition in i -direction, where
EW is the potential energy of the system for the case when the
atom comes to the saddle point and E0 is the energy for the
case when the atom is at equilibrium position, νi is a frequency
factor.

It was shown, that equation (5) is right for a system under
the displacement field [10].

The next moment of the approach is concerned with an
evaluation of contributions in the change of the potential barrier
�Qi = Qi − Q0, where Q0 is the activation barrier for
atom migration in a perfect lattice. The barrier for the atom
jump is altered in accordance with equation (4) and �Qi =
�EW − �E0. Now we not only take into account the change
in the distance under strain between the jumping atom and
its neighbors, but also the changes in the distances under
strain between other atoms of the system (see for example, the
distances presented by dashed lines in figure 1(a) and (b)).

The rate of atom jumps in different directions define the
flux density of the vacancies, the explicit form of which can
be derived by the ‘hole gas’ method suggested by Gurov [16].
This method allows us to calculate the balance of different
jumps and their contribution to the flux. It is the main moment
of the approach. More detailed descriptions of these steps can
be found in [10, 11, 13].

3. Results

3.1. Vacancy diffusion under a stress. The FCC system

General equations for the components of the vacancy flux
density for a given displacement field are

J1 = − 1




[
D11

∂c

∂x
+ D12

∂c

∂y
+ D13

∂c

∂z

− c

(
∂ D11

∂x
+ ∂ D12

∂y
+ ∂ D13

∂z

)]
,

J2 = − 1




[
D21

∂c

∂x
+ D22

∂c

∂y
+ D23

∂c

∂z

− c

(
∂ D21

∂x
+ ∂ D22

∂y
+ ∂ D23

∂z

)]
,

J3 = − 1




[
D31

∂c

∂x
+ D32

∂c

∂y
+ D33

∂c

∂z

− c

(
∂ D31

∂x
+ ∂ D32

∂y
+ ∂ D33

∂z

)]
,

(6)

where,

D11 = D

2
exp

(
− K1Spε

θ

) [
exp

(
− K2ε33

θ

)
ch

(
− K3ε12

θ

)

+ exp

(
− K2ε22

θ

)
ch

(
− K3ε13

θ

)]
,

D22 = D

2
exp

(
− K1Spε

θ

) [
exp

(
− K2ε33

θ

)
ch

(
− K3ε12

θ

)

+ exp

(
− K2ε11

θ

)
ch

(
− K3ε23

θ

)]
,

D33 = D

2
exp

(
− K1Spε

θ

) [
exp

(
− K2ε11

θ

)

× ch

(
− K3ε23

θ

)
+ exp

(
− K2ε22

θ

)
ch

(
− K3ε13

θ

)]
,

D12 = D

2
exp

(
− K1Spε

θ

)
exp

(
− K2ε33

θ

)
sh

(
− K3ε12

θ

)
,

D13 = D

2
exp

(
− K1Spε

θ

)
exp

(
− K2ε22

θ

)
sh

(
− K3ε13

θ

)
,

D23 = D

2
exp

(
− K1Spε

θ

)
exp

(
− K2ε11

θ

)
sh

(
− K3ε23

θ

)
,

D21 = D12, D31 = D13, D32 = D23,

(7)

where D is the vacancy diffusion coefficient in the perfect
system, 
 is the atomic volume, c is the vacancy concentration,
θ = kBT .

It should be emphasized that we did not assume that
K2εii/θ and the analogous ratios are small in contrast to the
authors of [6] and some other works. One can readily see that
in this case the vacancy flux density depends on the matrix of
diffusion coefficients. Each of these coefficients depends on
strain tensor components in a nonlinear way. In corresponding
nonlinear equations, the functional dependence of strain is
determined by coefficients, which are the main characteristics
of the strain influence on diffusion (SID coefficients):

K1 =
∑

s

∑
k �=s

((
yW

ks

)2

RW
ks

∂ E

∂ Rks

∣∣∣∣
RW

ks

)

−
∑

s

∑
k �=s

((
y0

ks

)2

R0
ks

∂ E

∂ Rks

∣∣∣∣
R0

ks

)

K2 =
∑

s

∑
k �=s

((
xW

ks

)2

RW
ks

∂ E

∂ Rks

∣∣∣∣
RW

ks

)

−
∑

s

∑
k �=s

((
x0

ks

)2

R0
ks

∂ E

∂ Rks

∣∣∣∣
R0

ks

)

−
[∑

s

∑
k �=s

((
yW

ks

)2

RW
ks

∂ E

∂ Rks

∣∣∣∣
RW

ks

)

−
∑

s

∑
k �=s

((
y0

ks

)2

R0
ks

∂ E

∂ Rks

∣∣∣∣
R0

ks

)]

K3 = 2

[∑
s

∑
k �=s

(
yW

ks zW
ks

RW
ks

∂ E

∂ Rks

∣∣∣∣
RW

ks

)

−
∑

s

∑
k �=s

(
y0

ks z0
ks

R0
ks

∂ E

∂ Rks

∣∣∣∣
R0

ks

)]
.

(8)
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These coefficients depend on the atomic interaction and
atomic configuration of the defect environments such as when
the atom comes to the saddle point (relative distances between
the atoms have index W) and when the atom is at the
equilibrium position (relative distances between the atoms have
index 0). Equation (8) is obtained after consideration of the
atom jump from the site with coordinates (0, a/2, a/2) to the
(0, 0, 0) position. Analogical equations for other atom jump
directions may be obtained with the help of a permutation of
x, y, z in equation (8) taking into account a jump symmetry
and the calculations of SID coefficients on the basis that all
such equations give us the same values.

Accordingly, three coefficients K1, K2, K3 determine the
influence of the deformation field on the diffusion in a one-
component system with an fcc structure.

3.2. Vacancy diffusion under a stress. The BCC system

The equation for the flux is the same as in the fcc structure, but
the diffusion coefficients are different cardinally:

D11 = D

2
exp

(
− K1Spε

θ

) [
exp

(
+ K2ε23

θ

)

× ch

(
K2 (ε12 + ε13)

θ

)
+ exp

(
− K2ε23

θ

)

× ch

(
K2 (ε12 − ε13)

θ

)]

D22 = D

2
exp

(
− K1Spε

θ

) [
exp

(
+ K2ε13

θ

)

× ch

(
K2 (ε12 + ε23)

θ

)
+ exp

(
− K2ε13

θ

)

× ch

(
K2 (ε12 − ε23)

θ

)]

D33 = D

2
exp

(
− K1Spε

θ

) [
exp

(
+ K2ε12

θ

)

× ch

(
K2 (ε13 + ε23)

θ

)
+ exp

(
− K2ε12

θ

)

× ch

(
K2 (ε13 − ε23)

θ

)]

D12 = D

2
exp

(
− K1Spε

θ

) [
exp

(
+ K2ε12

θ

)

× ch

(
K2 (ε13 + ε23)

θ

)
− exp

(
− K2ε12

θ

)

× ch

(
K2 (ε13 − ε23)

θ

)]

D13 = D

2
exp

(
− K1Spε

θ

) [
exp

(
+ K2ε13

θ

)

× ch

(
K2 (ε12 + ε23)

θ

)
− exp

(
− K2ε13

θ

)

× ch

(
K2 (ε12 − ε23)

θ

)]

D23 = D

2
exp

(
− K1Spε

θ

) [
exp

(
+ K2ε23

θ

)

× ch

(
K2 (ε12 + ε13)

θ

)
− exp

(
− K2ε23

θ

)

× ch

(
K2 (ε12 − ε13)

θ

)]
.

(9)

For this structure, two coefficients K1, K2 determine the
influence of the strain on the diffusion:

K1 =
∑

s

∑
k �=s

(
xW

ks

)2

RW
ks

∂ E

∂ Rks

∣∣∣∣
RW

ks

−
∑

s

∑
k �=s

(
x0

ks

)2

R0
ks

∂ E

∂ Rks

∣∣∣∣
R0

ks

K2 = 2

(∑
s

∑
k �=s

xW
ks yW

ks

RW
ks

∂ E

∂ Rks

∣∣∣∣
RW

ks

−
∑

s

∑
k �=s

x0
ks y0

ks

R0
ks

∂ E

∂ Rks

∣∣∣∣
R0

ks

)
.

(10)

3.3. Diffusion under high pressure

In the case of a hydrostatic pressure P , with Spε = −P/K0,
εll = −P/(3K0), εi j = 0, i �= j where K0 is the bulk
modulus. The expression for the vacancy flux density in the
fcc system is

J x = − D



exp

[
P

θ K0

(
K1 + K2

3

)]
∂c

∂x
, (11)

where D is the vacancy diffusion coefficient under zero
pressure.

Comparing the vacancy diffusion coefficient under
pressure from equation (11) with its general thermodynamical
expression [1], one gets the migration volume for fcc metals:

V m = − 1

K0

[
K1 + K2

3

]
(12)

and similarly in the case of bcc lattices:

V m = − K1

K0
. (13)

As can be seen, the expression for the migration volume
can be obtained in another way [15]. If we substitute the
components of the deformation tensor corresponding to the
case of the hydrostatic pressure into equation (4), we obtain
the corresponding change of potential barrier �Q. (Since the
system is now uniform, �Qi for jumps performed in different
directions are equal and the lower index can be deleted.)
Substituting �Q in equation (5) for the jump rate, and taking
into account that in the general case of random migration the
diffusion coefficient DR is related to the jump rate in a simple
way [1]:

DR = 1
6λ

2�, (14)

where λ is the jump distance, we obtain the expression of the
diffusion coefficient under pressure Dp:

Dp = 1

6
λ2ν exp

(
− Q0

θ

)
exp

(
−�Q

θ

)
(15)
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and then for the migration volume:

V m = − 1

6K0

(∑
k

∑
s

RW
ks

∂ E

∂ Rks

∣∣∣∣
RW

ks

−
∑

k

∑
s

R0
ks

∂ E

∂ Rks

∣∣∣∣
R0

ks

)
. (16)

Since we know K1 and K2, it can be easily understood
that both equations for volume migration are identical if
the symmetry of the jumping atom coordinates is taken into
account. These results are valid for the cases of vacancy
diffusion in fcc and bcc structures.

The migration volume and SID coefficients are very
sensitive to the atomic structure in the nearest vicinity of
a defect and still more sensitive to the atomic structure of
the saddle-point configuration. We have built an advanced
model for their evaluation [17–19]. Some simulation results of
mentioned structures in bcc metals and the migration volumes
are presented in [17–19].

4. Summary

In the present paper, we proposed an original microscopic
approach to examine how elastic strains of a general type
affect the vacancy diffusion in the case of pure metals. The
main physical ingredient of this approach is the fact that the
positions of atoms are changed due to the displacement field
and the potential energy of atoms is changed accordingly. This
is true whatever the position of the atom under consideration
is, in saddle as well as in an equilibrium configuration. We
not only take into account a change in the distance under
strain between a jumping atom and its neighbors, but also the
changes in the distances under strain between other atoms in
the system. General equations for the vacancy fluxes in fcc and
bcc metals and new equations for SID coefficients are obtained.
This generalization allows N-body potentials to be used for the
calculation of the mentioned coefficients.

An application of the obtained equations in the case of a
hydrostatic pressure gives us the possibility of determining the
relation between the migration volume and SID coefficients in
the fcc and bcc metals.
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